Trabalhando com Dados Categóricos no XGBoost
O XGBoost, apesar de ser uma biblioteca de gradient boosting poderosa e eficiente, é feito para trabalhar com dados numéricos. Isso significa que você precisa encontrar uma maneira de transformar dados categóricos em um formato que o XGBoost possa entender. Esse processo pode ser demorado e complexo, especialmente se você estiver lidando com um grande número de variáveis categóricas ou categorias. O problema se torna ainda mais desafiador quando você considera as armadilhas potenciais da transformação de variáveis categóricas....